Zuschriften

Self-Assembly

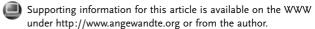
A Palladium(II)-Clipped Aromatic Sandwich**

Kazuhisa Kumazawa, Yoshinori Yamanoi, Michito Yoshizawa, Takahiro Kusukawa, and Makoto Fujita*

Enclathration of large π -conjugated molecules by a synthetic receptor is an interesting task because the properties of these molecules, such as stability, reactivity, solubility, and photoand electroresponse, can be controlled.^[1] To enclathrate large π -conjugated molecules, however, a synthetic receptor with a cavity is required, whose dimensions should be larger than that of the π -conjugated guests. While there are many examples of three-dimensional receptors, [2] large two-dimensional receptors have been less explored.[3] Herein we describe the self-assembly of a π -stacked host-guest system in which large aromatic guests are sandwiched by metalclipped π -conjugated ligands. The ligand 1 is a roughly 2-nmsized hexagonal planar molecule that consists of ten aromatic rings with six pyridyl donor sites at the periphery. Upon complexation with $[(en)Pd(NO_3)_2]$ (en = 1,2-ethanediamine) this ligand is assembled to give large two-dimensional receptors. In the presence of D_{3h} -symmetric guests (2), sandwich complexes $[2\subset 3]^{12+}$, where 3^{12+} has a composition of $[\{(en)Pd\}_{6}(1)_{2}]^{12+}$, are quantitatively assembled. The guest molecule is wrapped by two ligands whose pyridyl donor sites

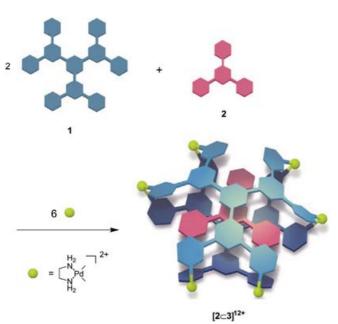
Department of Applied Chemistry, School of Engineering The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)


Fax: (+81) 3-5841-7257

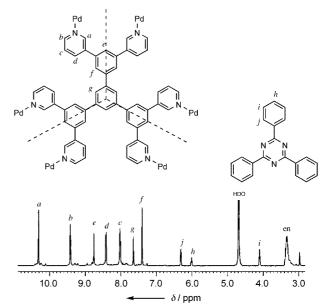
DOI: 10.1002/ange.200460868

E-mail: mfujita@appchem.t.u-tokyo.ac.jp


- [†] Present address:

 Department of Chemistry and Materials Technology
 - Kyoto Institute of Technology Sakyo-ku, Kyoto 606–8585 (Japan)
- [**] This work was supported by the CREST (Core Research for Evolutional Science and Technology) project of Japan Science and Technology Agency. K.K. thanks the JSPS fellowship for Japanese Young Scientists.

^[*] K. Kumazawa, Dr. Y. Yamanoi, Dr. M. Yoshizawa, Dr. T. Kusukawa,⁺ Prof. M. Fujita


are fully clipped by six {(en)Pd}²⁺ units at the rim of the structure (Scheme 1).

Scheme 1. The self-assembly of $[2 \subset 3]^{12+}$ complex.

An excess of 2a (suspension) was treated with 1 (3.5 µmol) and [(en)Pd(NO₃)₂] (15 µmol) in D₂O:CD₃CN (2:1; 0.7 mL) for 2 h at 60 °C. After filtration of non-enclathrated 2a, a simple ¹H NMR spectrum was obtained from the clear solution, which indicated the formation of a single product (Figure 1). The seven signals observed in the aromatic region (H_{a-g}) agree with the D_{3h} structure of 3^{12+} . Highly upfield-shifted signals (H_{h-j}), showing a typical phenyl splitting pattern, were assigned to guest 2a accommodated within the cavity of 3^{12+} . The $[2a \subset 3]^{12+}$ structure was strongly supported by NOESY experiment, which showed correlation between H_f of 3^{12+} and H_j of 2a.^[4]

Cold spray ionization mass spectroscopy (CSI-MS) clearly suggested the formation of $[2\mathbf{a} \subset 3]^{12+}$, it showed a series of prominent peaks corresponding to $[2\mathbf{a} \subset 3 + (\mathrm{NO_3}^-)_m + (\mathrm{dmf})_n]^{12-m+}(m=5-9,\ n=0-14)$. For example, in 4⁺ and 5⁺ regions, two intense peaks at m/z 872.3 and 729.4 were assigned to $[2\mathbf{a} \subset 3 + (\mathrm{NO_3}^-)_8 + (\mathrm{dmf})_2]^{4+}$ and $[2\mathbf{a} \subset 3 + (\mathrm{NO_3}^-)_7 + (\mathrm{dmf})_5]^{5+}$, respectively (Figure 2). Note that,

Figure 1. ¹H NMR spectrum of $[2a \subset 3]^{12+}$. Assignments of $H_a - H_j$ are given.

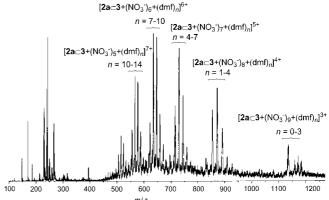
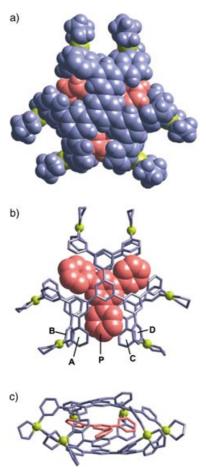



Figure 2. CSI-MS spectrum of $[2aC3]^{12+}$ (H₂O:CH₃CN:DMF=12:6:1, RT).

under CSI-MS conditions, there was little indication for the presence of either guest-free species or fragmented species, which shows the remarkable stability of the $[2a \subset 3]^{12+}$ complex in solution.

When guest **2a** was replaced by 1,3,5-triphenylbenzene (**2b**), single crystals suitable for X-ray analysis were obtained by slow diffusion of THF into an aqueous solution of the complex. [6] The X-ray analysis revealed the expected structure where two molecules of **1** are clipped by six {(en)Pd}²⁺ units allowing the complete wrapping of the large planar guest (Figure 3). The conformation of **1** is not planar but slightly concave. The pyridine ring centers are situated above the face of the core benzene ring at an average separation of 1.2 Å. The 3-pyridyl groups are tilted by 31–42° with respect to adjacent phenyl groups so that they coordinate to Pd^{II} centers with ideal bite angles (89–91°). Thus, host distortion exists not around the Pd^{II} centers but along the large framework of **1**, which suggests that close host–guest packing generates

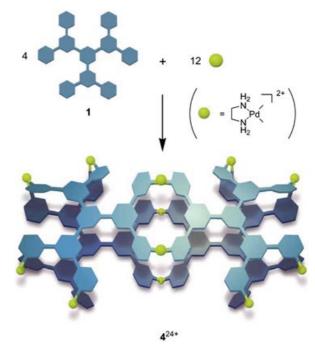

Zuschriften

Figure 3. X-ray crystallographic structure of $[2b\subset 3]^{12+}$. a) Space-filling representation (top view), b) top view showing the D_3 orientation of guest **2b**. Around the phenyl group **P**, π – π stacking with pyridine rings **A** and **C**, and CH– π contact with pyridine rings **B** and **D** are observed; c) A side view.

greater distortion. The core benzene ring of $2\mathbf{b}$ is tightly stacked with the two ligands (3.5 Å van der Waals contact). In the crystal, D_3 symmetry is observed (not D_{3h}), each phenyl group of the guest being tilted by 30–36° allowing efficient π - π and CH- π interactions with four surrounding pyridine rings (Figure 3b). As a result, $2\mathbf{b}$ is fully wrapped by 3^{12+} .

While $[2 \subset 3]^{12+}$ complexes are stabilized by sufficient host–guest interactions, the host framework itself is considerably distorted. In the absence of a guest, therefore, less distorted structure 4^{24+} is formed (Scheme 2). Compound 4^{24+} is a dimer of 3^{12+} generated through the breaking of two Pd–N bonds. The high-yield formation of 4^{24+} was confirmed by NMR spectroscopy and CSI-MS spectrometry. When 1 and $[(en)Pd(NO_3)_2]$ were mixed in a 1:3 ratio without guest molecules, 19 resonance signals, corresponding to half the framework of 1, appeared in the aromatic region indicating the reduction, after complexation, of the inherent D_{3h} symmetry of 1 into D_{2h} symmetry (Figure 4a). CSI-MS measurement showed the molecular weight of 6562 Da, which is exactly twice as much as $3^{12+}[NO_3^-]_{12}$, supporting the proposed $M_{12}L_4$ dimeric structure 4^{24+} .

Scheme 2. Self-assembly of the dimeric structure, **4**²⁴⁺.

A smaller aromatic guest, triphenylene (5), is included in the cavity of 4^{24+} (which is expanded compared to that of 3^{12+}) in a 1:2 ratio upon treating it with a solution of 4^{24+} for 2 h at 60 °C. The formation of the $[(5)_2 \subset 4]^{24+}$ complex was revealed by NMR spectroscopy with the highly upfield-shifted signals of $5 \ (\delta = 6.9 \ \text{and} \ 6.0 \ \text{ppm})$ and the slightly shifted 19 signals in the aromatic region of the host (Figure 4b). Some minor signals in Figure 4b may be assigned to other host–guest complexes, such as 1:1 complex $[5 \subset 4]^{24+}$ or monomer complex $[5 \subset 3]^{12+}$. CSI-MS also indicated the required stoichiometry for the $[(5)_2 \subset 4]^{24+}$ complex (see Supporting Information).

When guest 2a was suspended in the solution of the $[(5)_2 \subset 4]^{24+}$ complex, guest exchange took place at $60\,^{\circ}\mathrm{C}$ within 24 h concomitant with host monomerization. That is, $[(5)_2 \subset 4]^{24+}$ was converted into $[2a \subset 3]^{12+}$, as shown by NMR spectroscopy (Figure 4b–e). Clearly, the self-assembly of hosts 3^{12+} and 4^{24+} is dynamic owing to the labile nature of the Pd–N bond. The host-guest stabilization in $[2a \subset 3]^{12+}$ dominates over the distortion of the host framework, whereas less distorted 4^{24+} is favored when a guest is absent or less efficiently trapped by the host.

In summary we have constructed a large π -conjugated, expanded two-dimensional receptor by self-assembly. Extension of this study could ease the handling of very large π -molecules, such as molecular graphites, which are in general tedious to treat in solution because of their very poor solubility. The chemical and physical properties of such large π -molecules may be restricted within large two-dimensional cavities.

Received: June 4, 2004

Keywords: molecular recognition \cdot palladium \cdot pi interactions \cdot receptors \cdot self-assembly

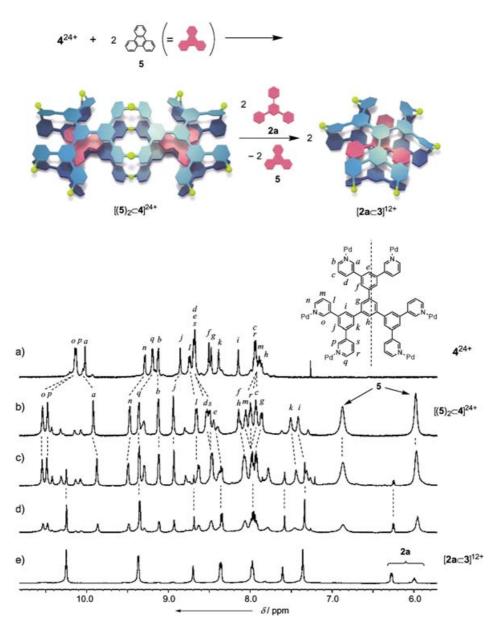


Figure 4. ¹H NMR spectroscopic monitoring of the conversion of $[(5)_2 \subset 4]^{24+}$ into $[2a \subset 3]^{12+}$. The spectrum of a) dimeric host 4^{24+} , b) $[(5)_2 \subset 4]^{24+}$, c) the spectra upon the addition of 2 (1 equiv) to the $[(5)_2 \subset 4]^{24+}$ solution after 1 h, d) after 24 h, e) The spectrum after filtration, further addition of 2 (1 equiv) to the solution, and stirring the mixture for an additional 2 h.

- For specific guest behaviors in noncovalent receptors see; a) F. Hof, S. L. Craig, C. Nuckolls, J. Rebek, Jr., Angew. Chem. 2002, 114, 1556-1578; Angew. Chem. Int. Ed. 2002, 41, 1488-1508; b) M. Yoshizawa, Y. Takeyama, T. Okano, M. Fujita, J. Am. Chem. Soc. 2003, 125, 3243-3247; c) M. Ziegler, J. L. Brumaghim, K. N. Raymond, Angew. Chem. 2000, 112, 4285-4287; Angew. Chem. Int. Ed. 2000, 39, 4119-4121; d) J. M. C. A. Kerckhoffs, F. W. B. van Leeuwen, A. L. Spek, H. Kooijman, M. Crego-Calama, D. N. Reinhoudt, Angew. Chem. 2003, 115, 5895-5900; Angew. Chem. Int. Ed. 2003, 42, 5717-5722.
- [2] a) M. Fujita, K. Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, K. Biradha, *Chem. Commun.* 2001, 509-518; b) M. M. Conn, J. Rebek, Jr., *Chem. Rev.* 1997, 97, 1647-1668; c) R. W. Saalfrank, E. Uller, B. Demleitner, I. Bernt, *Struct. Bonding (Berlin)* 2000, 96, 149-175; d) R. W. Saalfrank, H. Glaser, B. Demleitner, F. Hampel, M. M. Chowdhry, V. Schünemann, A. X. Trautwein,
- G. B. M. Vaughan, R. Yeh, A. V. Davis, K. N. Raymond, *Chem. Eur. J.* **2002**, *8*, 493–497; e) R. L. Paul, Z. R. Bell, J. C. Jeffery, J. A. McCleverty, M. D. Ward, *Proc. Natl. Acad. Sci. USA* **2002**, *99*, 4883–4888.
- [3] a) K. Kumazawa, K. Biradha, T. Kusukawa, T. Okano, M. Fujita, Angew. Chem. 2003, 115, 4039-4043; Angew. Chem. Int. Ed. 2003, 42, 3909-3913; b) R. D. Sommer, A. L. Rheingold, A. J. Goshe, B. Bosnich, J. Am. Chem. Soc. 2001, 123, 3940-3952; c) S.-S. Sun, A. Lees, Chem. Commun. 2001, 103-104.
- [4] In the NOESY spectrum, not only host-guest correlation but also the orientation of the ligand 1 (between H_a and H_e) were assigned, see the Supporting Information.
- [5] K. Yamaguchi, J. Mass Spectrom. 2003, 38, 473-490.
- [6] Crystal data for $[\mathbf{2b} \subset \mathbf{3}]^{12+}$: $C_{144}H_{138}N_{36}O_{57}Pd_6$, $M_r = 3927.85$, crystal dimensions $0.40 \times 0.20 \times 0.20$ mm³, monoclinic, P2(1)/n, a = 20.5995(11), b = 26.3842(15), c = 30.3963(16) Å, V = 16340.8(15) ų, Z = 4, $\rho_{calcd} = 1.597$ g cm⁻³, F(000) = 7951,

Zuschriften

- $\lambda(\mathrm{Mo_{Ku}}) = 0.71073$ Å, T = 173(2) K, 104788 reflections collected, 37340 independent reflections observed; 2079 number of parameters; $R_1 = 0.0556$; $wR_2 = 0.1403$. CCDC-238928 ($2\mathbf{b} \subset 3^{12+}$) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
- [7] Conformational change in self-assembled frameworks: a) S. Hiraoka, T. Yi, M. Shiro, M. Shionoya, J. Am. Chem. Soc. 2002, 124, 14510-14511; b) S. Tashiro, M. Tominaga, T. Kusukawa, M. Kawano, S. Sakamoto, K. Yamaguchi, M. Fujita, Angew. Chem. 2003, 115, 3389-3992; Angew. Chem. Int. Ed. 2003, 42, 3267-3270; c) S. Hiraoka, M. Fujita, J. Am. Chem. Soc. 1999, 121, 10239-10240; d) P. N. W. Baxter, J.-M. Lehn, G. Baum, D. Fenske, Chem. Eur. J. 2000, 6, 4510-4517; e) D. P. Funeriu, J.-M. Lehn, K. M. Fromm, D. Fenske, Chem. Eur. J. 2000, 6, 2103-2111.